Á dIstancia entre os pontos B(-2b,b) e c(3,1) e raiz de cinco. determine as coordenadas do ponto B

Convidado:

A distância entre os pontos é dada por:

d_BC = √[(3 +2b)²+(1-b)²] e d_BC = √(5)

⇒ √(5) = √[(3 +2b)²+(1-b)²]

⇒ [√(5)]² = {√[(3 +2b)²+(1-b)²]}²

⇒ 5 = (3 +2b)²+(1-b)²

⇒ 5 = 9 +12b +4b² +1 -2b +b²

⇒ 9 +12b +4b² +1 -2b +b² = 5

⇒ 5b² +10b +10 = 5

⇒ 5b² +10b +10 -5 = 0

⇒ 5b² +10b +5 = 0

Calculando o discriminante:

∆ = 100 - 4(5)(5) = 100 - 100 = 0

⇒ b = (-10 ± 0 )/10 = -1


Daí, as coordenadas do ponto B são, 2 e -1, ou seja, B(2, -1), :-)

Convidado:

A distância entre dois pontos é dada por:
Desse modo, se a distância entre os pontos e é igual a , segue que:
Elevando ambos os membros ao quadrado:
Logo:
Logo, as coordenadas do ponto B são .

Deixe uma resposta